5.8: Does Every Complex Number Have a Root?

Fundamental Theorem of Algebra

The image on the right is a graph created by Paul Nylander of all the roots for all possible combinations of $18^{\text {th }}$ order polynomials with coefficients of ± 1.

I. Square Roots of Complex Numbers

1. Use the geometric effect of complex multiplication to describe how to calculate a square root of $z=119+120 i$.
2. Calculate an estimate of a square root of $119+120 i$.
3. Every real number has two square roots. Explain why.
4. Provide a convincing argument that every complex number must also have two square roots.
5. Explain how the polynomial identity $x^{2}-b=(x-\sqrt{b})(x+\sqrt{b})$ relates to the argument that every number has two square roots.
6. What is the other square root of $119+120 i$?

EXAMPLE 1: Find the square roots of $119+120 i$ algebraically.
Let $w=p+q i$ be the square root of $119+120 i$. Then

$$
\begin{gathered}
w^{2}=119+120 i \\
\text { and } \\
(p+q i)^{2}=119+120 i
\end{gathered}
$$

a. Expand the left side of this equation.
b. Equate the real and imaginary parts, and solve for p and q.
c. What are the square roots of $119+120 i$?
7. Use the method in Example 1 to find the square roots of $1+\sqrt{3} i$.
8. Find the square roots of each complex number.
a. $5+12 i$
b. $5-12 i$
9. Show that if $p+q i$ is a square root of $z=a+b i$, then $p-q i$ is a square root of the conjugate of $z, \bar{z}=a-b i$.
a. Explain why $(p+q i)^{2}=a+b i$.
b. What do a and b equal in terms of p and q ?
c. Calculate $(p-q i)^{2}$. What is the real part, and what is the imaginary part?
d. Explain why $(p-q i)^{2}=a-b i$.

Lesson Summary

The square roots of a complex number $a+b i$ will be of the form $p+q i$ and $-p-q i$ and can be found by solving the equations $p^{2}-q^{2}=a$ and $2 p q=b$.

